If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2=216
We move all terms to the left:
6w^2-(216)=0
a = 6; b = 0; c = -216;
Δ = b2-4ac
Δ = 02-4·6·(-216)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*6}=\frac{-72}{12} =-6 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*6}=\frac{72}{12} =6 $
| 3(2x-2)-5=3(x-4)+10 | | 8x-2(x+5)=7x-5 | | 36=u+5u | | 5y-6=15y+64 | | 9x+5=x+13 | | 1x^2=4/25 | | -3.6=4x+2.3 | | X+4/18=5/9+x-2/7 | | 2+8x-25=0 | | 2+8x-25=73 | | 0=x(16-1) | | -5n-8(1+56n)=-8 | | 5x+14-5x=6 | | X=2x-2=9 | | 160=10(x-75)+60 | | x-0.04x=24.96 | | 2x+60+3x+x=180 | | 18+7x=14x-3 | | 13y-17=61 | | F=10(x-75)+60 | | 17+15x=62 | | 17+15x=x | | 9(v+1)-3v=3(2v+3)-10 | | 8y^2-6y+35=0 | | 3y+5|8=11|8 | | 15.442t^2-9.5t=0 | | 18n^2=50 | | 6x+5=3.9-4 | | 2x+4=−3x−2 | | 8-9x=0 | | 6x-5=3.9+4 | | 6x-5=3.9 |